OPERACIONES DE CONJUNTOS
Operaciones con conjuntos.
Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento.Ejemplo 1.
Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente:También se puede graficar del siguiente modo:
Ejemplo 2.
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 3.
Dados dos conjuntos F={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la unión será F∪B={x/x estudiantes que juegan fútbol o básquet}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 4.
Dados los dos conjuntos A={3, 5, 6, 7} y B={5,6}, en donde B está incluido en A, la unión será AUB={3,5,6,7}. Usando diagramas de Venn se tendríaIntersección de conjuntos.
Ejemplo 1.
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 2.Diferencia de conjuntos.
Dados dos conjuntos A={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la intersección será F∩B={x/x estudiantes que juegan fútbol y básquet}. Usando diagramas de Venn se tendría lo siguiente:
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -.
Ejemplo 1.
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será A-B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 2.
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será B-A={6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 3.
Dados dos conjuntos F={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la diferencia de F con B, será F-B={x/x estudiantes que sólo juegan fútbol}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 4.Diferencia de simetrica de conjuntos.
Dados dos conjuntos F={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la diferencia de B con F, será B-F={x/x estudiantes que sólo juegan básquet}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 1.
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 2.Complemento de un conjunto.
Dados dos conjuntos F={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la diferencia simétrica será F △ B={x/x estudiantes que sólo juegan fútbol y básquet}. Usando diagramas de Venn se tendría lo siguiente:
Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto que se opera, algo como esto A' en donde el el conjunto A es el conjunto del cual se hace la operación de complemento.
Ejemplo 1.
Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
Ejemplo 2.
Dado el conjunto Universal U={x/x estudiantes de un colegio} y el conjunto V={x/x estudiantes que juegan voley}, el conjunto V' estará formado por los siguientes elementos V'={x/x estudiantes que no juegan voley}. Usando diagramas de Venn se tendría lo siguiente:
Aquí te proporciono un juego para que pratiques las operaciones de comjuntos.
Nuevamente gracias por ver mi blog😊
Comentarios
Publicar un comentario